Lattices: Math for Cryptography II
They Have Played Us For Absolute Fools
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What this Presentation Is

® An overview of mathematical constructs that are
important to cryptography (and common in modern CTFs).

® Intended for people with minimal mathematical
background.
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What this Presentation Isn’t

® A complete guide on understanding linear algebra,
lattices, or algorithms that relate to these topics.

® Particularly difficult...if you don’t space out.
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By the End

® Be able to solve simple cryptography CTF challenges.

® Start to see linear algebra, and lattices, everywhere.
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Note on Notation and Assumptions

e IN: Natural numbers: {1,2,3,..}
® 7Z: Integers: {..,—3,-2,-1,0,1,2,3,...}

® The || thing we discussed last time, and >, which are
multiplication and addition in for loops, respectively.

® We’ll switch a lot between 2 dimensional examples and
n-dimensional examples without proof, but trust us ---
these generalizations do hold.
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How do we attack crypto?

® Attack the implementation

® Attack the math
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How do we attack crypto?

® Attack the math



A Word of Warning...

Here’s a caricature of Legendre (legend-ray), a very famous
number theorist --- he influenced Gauss, who first played
with lattices.




Let’s Get Started!

Recall that,
Definition

A lattice L is a discrete subgroup of H generated by all
integer combinations of the wvectors of some basis B, that
18,

m m
L= 7Zb;= { zb;
i=0

1=0

ZZ'EZ,biEB}
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Got You.

Here’s how we’ll do it:

(These slides are borrowed from Thijs Laarhoven at TU/e)
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Some notes about vectors

® A vector is a collection of numbers: v = [

27
15

|
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Some notes about vectors

15

® The dot product, v-w is the sum of the product of each
element in v with each element in w. Example:

[ f-sesees

27
® A vector is a collection of numbers: v = [ ]

4 )
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Some notes about vectors

2
A vector is a collection of numbers: v = [12]

The dot product, v-w is the sum of the product of each
element in v with each element in w. Example:

m . E] —3.244.5=26

We define the "length" of a vector by it’s norm:
|lv]| = v/v-v. This is a number, not a vector!
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Some notes about vectors

27
® A vector is a collection of numbers: v = [15]

® The dot product, v-w is the sum of the product of each
element in v with each element in w. Example:

m . E] —3.244.5=26

® We define the "length" of a vector by it’s norm:
|lv]| = v/v-v. This is a number, not a vector!

® Recall the Cauchy-Schwarz inequality: v -w < [[v

ol ég



Some notes about vectors
We can split a vector up into its components:

Uyy



Some notes about vectors

Adding vectors is the same as adding their components.

Y
direction

b X * X - direction

(Image is shamelessly stolen from NASA)



Some notes about vectors

® Often, we use vectors to represent polynomials.

1 22
® What is the result of 3|z |7
—4 1
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® Often, we use vectors to represent polynomials.
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® What is the result of 3|z |7
—4 1

e 224 3x—4
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Some notes about vectors

® Often, we use vectors to represent polynomials.

1 22
What is the result of 3|z |7
—4 1

22 +3x—4

Usually, we omit x vector for brevity.

&3



TU/e

Lattices
What is a lattice?

by



e

Lattices
What is a lattice?




A Grid of Points, Yeah

1. A lattice is indeed an infinite grid of points.

2. It’s defined by adding together integral multiples of
subsets of the basis vectors.

3. It’s a bit different than the n-dimensional space R"
since that space is continuous —--- lattices are discrete
n—-dimensional spaces.

4. A set of basis vectors uniquely defines a lattice, but
we can find other sets of bases that define the same
lattice.
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Lattices.

Lattjce basis reduction




A Problem for You

Given a lattice, find the shortest vector (starting at say,
the origin) that ends at a grid point.

Note that the shortest vector problem and the smallest reduced basis
problem are identical: the shortest of the bases is necessarily the

shortest vector in the lattice, since it generates all the others.
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Lattices
Shortest Vector Problem (SVP)

b,




Er...

This problem is NP-complete.
time) way to solve it.

Let’s explore the (exponential
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,Finci<e— Pohst, enu.meration,

1. Determine possible coefficients of b.
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chke~Pohst enumeratlonj
-1 Determmg posslble coeff|C|ent§ ‘of b2




chke~Pohst enumeratlon, J
2 Fmd short vegtors for each coefflqent of b2
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Fincke-Pohst enumeration’

2! Find shQr"{ ve,Ciors ’,fBr e?éh Coéfﬁqiént of b:










chke~Pohst enumeratlon, J
2 Fmd short veg.tors for each coefflqent of b2




F i ncke~P ohste n/u”m e’fatib n’

3. Find a shqi;test_Nect’di' ambng all foy"ﬁd ve"i:tor’,s”x




/ Fincke-Pohst, ,enumeration,
."" 3.,,,«Find”,~é shqi;test_Nect’di' ambng ’alfl foy"ﬁd v’e'i:tor’,s”x




Solved!

So we solved (albeit very inefficiently...) the SVP. This

is an exponential time algorithm --- but like a lot of
NP-complete problems, can be approximated in polynomial
time.

In short: this hard problem can be approximated easily: we
can get a vector that may not be the shortest, but is within
a factor of the shortest.
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LLL

That approximation algorithm for lattice basis reduction
(=SVP) is called LLL (Lenstra-Lenstra-Lovasz).
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Okay, Nebu/Hassam, this is great, but what does it
have to do with cryptography?

Sorry, we got carried away...back to some crypto.
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Remember RSA? Good.

® We choose two primes (p,q), and compute N = pg, and
¢(N)=(p—-1)(¢g—1).
® Then generate (e,d) such that d =c ' (mod ¢(N))

® We can encrypt a number m as

c=mS (mod N)

® We can decrypt a message c as

m=c’ (mod N)
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Why is This Secure Again?

A1l that is sent over is ((N, e), c). Given this tuple, an
attacker cannot find m without factoring N (why?).
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Let’s Factor N

No, not the way QHusnain did it...



We Have Some Information Available

N =pq, a product of primes. Factor N.
1. Let’s say you have p and q.

2. 0Oh, that’s true, your problem’s solved.
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Hm, Maybe A Little Less Information

1. What if I give you just p.



Hm, Maybe A Little Less Information

1. What if I give you just p.
2. Hah! But ¢ is just
N
q=—
p

3. You’re getting good at this.
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What About Now?

You get some bits
(enough that you can’t
brute force, of course)
of p -—- not all, and
nothing about gq.

A5
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Let’s See What We Can Do

Say we know the top a bits of p. Then,
p=a-+x

where x is the unknown bits we have to solve for. As a
polynomial:
p=flz)=a+z

Can’t enumerate all x’s, so we pay Amazon to do it for us.
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We Math.

f@)=p=a+a

Let’s reframe the polynomial as a modular one:

fx)=a+2=0 modp
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Guess What?

We’re actually much worse at finding roots of modular
polynomials than ones over the integers.

Did we just shoot ourselves in the foot?
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Danger:

Math Ahead



We Want to Show You Some More Cool Math

We present the Howgrave-Graham (1997, Section 2) method of
finding small roots of an irreducible monic modular
polynomial.
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Don’t Get Notation Paralysis!

® polynomial: recall initial slides

® monic: leading coefficient 1 and univariate
® univariate: 1in one variable

® irreducible: no cheap factoring tricks

® modular: modulo some integer

So a polynomial that looks like this:

p(x) =2 + 12"+ 4 a1z +a, (mod N)

That’s exactly the kind of polynomial we’re solving:

f(z) =z +a (modp) ég



Howgrave-Graham

Let p(z) be some polynomial

d—1

p(z) = Zaiwi (mod b*)

1=0

where b,k € N. We want to find a root zp that is less than
a bound X. If the following two conditions are (both)
true:

1. p(x0) =0 (mod b*)
2. |lp(xzX)| < bF/Vd

Then p(zp) =0 over all the integers, Z.
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Proof

Define two vectors,

v=(1, wxo/X, x3/X? ..., zit/x

p) d—1
w = (ap, a1 X, aX* ..., ag1X“")

Confirm that the dot product v-w is just p(xo).
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Proof

Define two vectors,

— (1, @o/X, #3/X% ..., 2l /XIY)

v
2 d—1
w = (ap, a1 X, a2X* ..., ag1X“")

Also note that the ‘maximum’ possible v is

v=(1,1,1,...,1)
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Let’s Use Cauchy-Schwarz on v -w

v=(1, zo/X, 23/X?% ..., all/xd
W = (ao, alX, a2X2, ey ad_le_l)
(w v < flwl| [l

Here,

Jwl| < VI+1+-+1=+Vd

loll = \Jad +a?X2 + -+ a3, X3, = |[p(eX)]

&S



Let’s Use Cauchy-Schwarz on v -w

v=(1, wxo/X, x3/X? ..., zit/x)
w = (ag, a1 X, aX? ..., ad_l)(dfl)
(W v < lw| v

Here,

lw| < VIF1+ - +1=+d
Jo]| = |p(@X)]| < b*/Vd

by condition (2). <@§;j§;



Let’s Use Cauchy-Schwarz on v -w

jw - v| < Jwl] f|vl]
lw]| < Vd
ol = llp(zX)|| < b*/Vd

Finally, using Cauchy-Schwarz:

bk
z0)| = |w-v| < Vd— =bF

P



Wait, So What I’m Saying Is...

p(z0) =0 (mod b*) and |p(xg)| < b* mean that...



Wait, So What I’m Saying Is...

p(20) =0 (mod b*) and |p(xg)| < b¥ mean that...p(zo) must be
=0 over all integers.

And now, this modular polynomial is easy to solve since it’s
in the integers.
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Wait, But What Was The Point?

f(x) =0 mod p doesn’t satisfy this theorem’s bounds anyway.
Recall that for polynomial p(z) being solved for,
|p(xX)| < bF/\/d, which f doesn’t satisfy.
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A possible solution

What if we can construct another polynomial ¢(z) using f(z)
that has the same root zy we care about, but is "smaller"

and therefore:
® Obeys the bounds of the theorem, and thus
® Roots are easy to enumerate since it’s over the integers

instead of a modulo.
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How do we create g(x)?

We want a g(x) such that g(zo) =0 (mod b*) (and of course
that it works with Howgrave-Graham). Or,

g(z) € V"7

Point is, none of these operations change the meaning of g,

since f(rg) =0 mod b* for the root we want. <@;§j§;



How do we create g(x)?

We want a g(x) such that g(zo) =0 (mod b*) (and of course
that it works with Howgrave-Graham). Or,

g(z) € V"7
g(z) € 'L+ V" f(2)Z

Point is, none of these operations change the meaning of g,

since f(rg) =0 mod b* for the root we want. <@;§j§;



How do we create g(x)?

We want a g(x) such that g(zo) =0 (mod b*) (and of course
that it works with Howgrave-Graham). Or,

g(x) € b*Z
g(z) € V'Z + " f(2)Z
g(z) € PZ 4V f(2)Z + bFa f ()7

Point is, none of these operations change the meaning of g,
since f(wg) =0 mod b* for the root we want.
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How do we create g(x)?

We want a g(x) such that g(zo) =0 (mod b*) (and of course
that it works with Howgrave-Graham). Or,

g(z) € V"7

g(z) € V'L + 1 f(2)Z

g(z) € PZ 4V f(2)Z + bFa f ()7

g(x) € *Z+ 08 f(2)Z + b f(2)Z + b2 f(2)Z + - -

X

Point is, none of these operations change the meaning of g,

since f(rg) =0 mod b* for the root we want. @



And Now, The Voila

Remember the shortest vector problem?

We can put in coefficients to (xX)*f(r) as k € Z bases for a
lattice into LLL and find (one of) the shortest vector bases
for the lattice.
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Wait, what just happened?

Remember, vectors can represent polynomials.

We’ve made a bunch of polynomials that have the same
properties as this ideal g(z), but they’re not the right
size for Howgrave-Graham. But, using LLL, we can find a
small enough vector that it might work!
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To Summarize

® We know r < 2%Vl = X | yhere ‘evil’ is the number of bits
that were wiped out. This is an upper bound.

® Construct matrix M so that:

X2 Xa 0
M=]10 X a
0 0 N

® Run LLL on this matrix, interpreting rows as basis
vectors, get output g(zX).

® Use the shortest vector as coefficients of g(z), which ?

is mot a modular polynomial. qzij

® Enumerate roots r; of ¢g(z) and check for (a+r;) | N. »



Whaddya Mean, That’s Voila?

Two observations:

1. Our lattice is made up of integral multiples of the
basis vectors, which are coefficients of f(zX). The
shortest basis generated by LLL, interpreted as
coefficients of g(zX), will have a set of solutions on
this lattice as well: so we retain all the information
f(z) gives us.

2. Recall that Howgrave-Graham requires that
|g(xX)| <bF/\/d, which is true, since the norm of the
shortest output vector basis from LLL is, well, short.?!

'Not exactly accurate --- if you figure out the bounds correctly, it’s
short enough.
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Whaddya Mean, That’s Voila?

Thus, we can take g(Xx), remove the X terms to get g(z).
Since it satisfies Howgrave-Graham, solve it over the

integers (easy), and check all the roots we get for dividing
N. More precisely,...
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To Summarize

The matrix M was constructed with values zX f(zX), f(zX),

and V*Z = N. Recall f(z) =a+x. These written out are:

X f(zX) = (2X)?+ Xza+0
fzX) = 042X +a
0+0+N

Taking the coefficients and putting them into a matrix:

X2 Xa 0
M=10 X a
0 0 N

That’s where M came from: it generates the lattice of the Q@
coefficients scaled by XF.
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Okay, how do we use this?

What if we can leak some information about (p,q)?

P, 9, e = random_prime(2°512), random_prime(2°512), 17
n, tot = pxq, (p-1)*(g-1)

d = inverse_mod(e, tot)

print(p - p % 27100, q = q % 27100)

We can recover p and ¢ even though we’re missing a lot of
their bits!
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