
Lattices: Math for Cryptography II

They Have Played Us For Absolute Fools

@nebu @Hassam

sigpwny{squeamish ossifrage}

Outline

Meta

Motivation

Danger: Math Ahead

What this Presentation Is

• An overview of mathematical constructs that are

important to cryptography (and common in modern CTFs).

• Intended for people with minimal mathematical

background.

What this Presentation Isn’t

• A complete guide on understanding linear algebra,

lattices, or algorithms that relate to these topics.

• Particularly difficult...if you don’t space out.

By the End

• Be able to solve simple cryptography CTF challenges.

• Start to see linear algebra, and lattices, everywhere.

Outline

Meta

Motivation

Danger: Math Ahead

Note on Notation and Assumptions

• N: Natural numbers: {1, 2, 3, ...}

• Z: Integers: {...,−3,−2,−1, 0, 1, 2, 3, ...}

• The
∏

thing we discussed last time, and
∑

, which are

multiplication and addition in for loops, respectively.

• We’ll switch a lot between 2 dimensional examples and

n-dimensional examples without proof, but trust us ---

these generalizations do hold.

How do we attack crypto?

• Attack the implementation

• Attack the math

How do we attack crypto?

• Attack the implementation

• Attack the math

How do we attack crypto?

• Attack the implementation

• Attack the math

A Word of Warning...

Here’s a caricature of Legendre (legend-ray), a very famous

number theorist --- he influenced Gauss, who first played

with lattices.

Let’s Get Started!

Recall that,

Definition

A lattice L is a discrete subgroup of H generated by all

integer combinations of the vectors of some basis B, that

is,

L =

m∑
i=0

Zbi =

{
m∑
i=0

zibi

∣∣∣∣∣ zi ∈ Z, bi ∈ B

}

Got You.

Here’s how we’ll do it:

(These slides are borrowed from Thijs Laarhoven at TU/e)

Some notes about vectors

• A vector is a collection of numbers: v =

[
27
15

]

• The dot product, v ·w is the sum of the product of each

element in v with each element in w. Example:[
3
4

]
·
[
2
5

]
= 3 · 2 + 4 · 5 = 26

• We define the "length" of a vector by it’s norm:

∥v∥ =
√
v · v. This is a number, not a vector!

• Recall the Cauchy-Schwarz inequality: v ·w ≤ ∥v∥∥w∥

Some notes about vectors

• A vector is a collection of numbers: v =

[
27
15

]
• The dot product, v ·w is the sum of the product of each

element in v with each element in w. Example:[
3
4

]
·
[
2
5

]
= 3 · 2 + 4 · 5 = 26

• We define the "length" of a vector by it’s norm:

∥v∥ =
√
v · v. This is a number, not a vector!

• Recall the Cauchy-Schwarz inequality: v ·w ≤ ∥v∥∥w∥

Some notes about vectors

• A vector is a collection of numbers: v =

[
27
15

]
• The dot product, v ·w is the sum of the product of each

element in v with each element in w. Example:[
3
4

]
·
[
2
5

]
= 3 · 2 + 4 · 5 = 26

• We define the "length" of a vector by it’s norm:

∥v∥ =
√
v · v. This is a number, not a vector!

• Recall the Cauchy-Schwarz inequality: v ·w ≤ ∥v∥∥w∥

Some notes about vectors

• A vector is a collection of numbers: v =

[
27
15

]
• The dot product, v ·w is the sum of the product of each

element in v with each element in w. Example:[
3
4

]
·
[
2
5

]
= 3 · 2 + 4 · 5 = 26

• We define the "length" of a vector by it’s norm:

∥v∥ =
√
v · v. This is a number, not a vector!

• Recall the Cauchy-Schwarz inequality: v ·w ≤ ∥v∥∥w∥

Some notes about vectors
We can split a vector up into its components:

v

vxx̂

vyŷ

x̂
ŷ

Some notes about vectors

Adding vectors is the same as adding their components.

(Image is shamelessly stolen from NASA)

Some notes about vectors

• Often, we use vectors to represent polynomials.

• What is the result of

 1
3
−4

 ·

x2x
1

?

• x2 + 3x− 4

• Usually, we omit x vector for brevity.

Some notes about vectors

• Often, we use vectors to represent polynomials.

• What is the result of

 1
3
−4

 ·

x2x
1

?
• x2 + 3x− 4

• Usually, we omit x vector for brevity.

Some notes about vectors

• Often, we use vectors to represent polynomials.

• What is the result of

 1
3
−4

 ·

x2x
1

?
• x2 + 3x− 4

• Usually, we omit x vector for brevity.

A Grid of Points, Yeah

1. A lattice is indeed an infinite grid of points.

2. It’s defined by adding together integral multiples of

subsets of the basis vectors.

3. It’s a bit different than the n-dimensional space Rn

since that space is continuous --- lattices are discrete

n-dimensional spaces.

4. A set of basis vectors uniquely defines a lattice, but

we can find other sets of bases that define the same

lattice.

A Problem for You

Given a lattice, find the shortest vector (starting at say,

the origin) that ends at a grid point.

Note that the shortest vector problem and the smallest reduced basis

problem are identical: the shortest of the bases is necessarily the

shortest vector in the lattice, since it generates all the others.

Er...

This problem is NP-complete. Let’s explore the (exponential

time) way to solve it.

Solved!

So we solved (albeit very inefficiently...) the SVP. This

is an exponential time algorithm --- but like a lot of

NP-complete problems, can be approximated in polynomial

time.

In short: this hard problem can be approximated easily: we

can get a vector that may not be the shortest, but is within

a factor of the shortest.

LLL

That approximation algorithm for lattice basis reduction

(=SVP) is called LLL (Lenstra-Lenstra-Lovász).

Okay, Nebu/Hassam, this is great, but what does it

have to do with cryptography?

Sorry, we got carried away...back to some crypto.

Remember RSA? Good.

• We choose two primes (p, q), and compute N = pq, and

ϕ(N) = (p− 1)(q − 1).

• Then generate (e, d) such that d ≡ e−1 (mod ϕ(N))

• We can encrypt a number m as

c ≡ me (mod N)

• We can decrypt a message c as

m ≡ cd (mod N)

Why is This Secure Again?

All that is sent over is ((N, e), c). Given this tuple, an

attacker cannot find m without factoring N (why?).

Let’s Factor N

No, not the way @Husnain did it...

We Have Some Information Available

N = pq, a product of primes. Factor N.

1. Let’s say you have p and q.

2. Oh, that’s true, your problem’s solved.

Hm, Maybe A Little Less Information

1. What if I give you just p.

2. Hah! But q is just

q =
N

p

3. You’re getting good at this.

Hm, Maybe A Little Less Information

1. What if I give you just p.

2. Hah! But q is just

q =
N

p

3. You’re getting good at this.

What About Now?

You get some bits

(enough that you can’t

brute force, of course)

of p --- not all, and

nothing about q.

Let’s See What We Can Do

Say we know the top a bits of p. Then,

p = a+ x

where x is the unknown bits we have to solve for. As a

polynomial:

p = f(x) = a+ x

Can’t enumerate all x’s, so we pay Amazon to do it for us.

No. We Math.

f(x) = p = a+ x

Let’s reframe the polynomial as a modular one:

f(x) ≡ a+ x ≡ 0 mod p

Guess What?

We’re actually much worse at finding roots of modular

polynomials than ones over the integers.

Did we just shoot ourselves in the foot?

Outline

Meta

Motivation

Danger: Math Ahead

We Want to Show You Some More Cool Math

We present the Howgrave-Graham (1997, Section 2) method of

finding small roots of an irreducible monic modular

polynomial.

Don’t Get Notation Paralysis!
• polynomial: recall initial slides

• monic: leading coefficient 1 and univariate

• univariate: in one variable

• irreducible: no cheap factoring tricks

• modular: modulo some integer

So a polynomial that looks like this:

p(x) = xk + ak−1x
k−1 + · · ·+ a1x+ ao (mod N)

That’s exactly the kind of polynomial we’re solving:

f(x) = x+ a (mod p)

Howgrave-Graham

Let p(x) be some polynomial

p(x) =

d−1∑
i=0

aix
i (mod bk)

where b, k ∈ N. We want to find a root x0 that is less than

a bound X. If the following two conditions are (both)

true:

1. p(x0) = 0 (mod bk)

2. ∥p(xX)∥ ≤ bk/
√
d

Then p(x0) = 0 over all the integers, Z.

Proof

Define two vectors,

v = (1, x0/X, x20/X
2, . . . , xd−1

0 /Xd−1)

w = (a0, a1X, a2X
2, . . . , ad−1X

d−1)

Confirm that the dot product v ·w is just p(x0).

Proof

Define two vectors,

v = (1, x0/X, x20/X
2, . . . , xd−1

0 /Xd−1)

w = (a0, a1X, a2X
2, . . . , ad−1X

d−1)

Also note that the ‘maximum’ possible v is

v = (1, 1, 1, . . . , 1)

Let’s Use Cauchy-Schwarz on v ·w

v = (1, x0/X, x20/X
2, . . . , xd−1

0 /Xd−1)

w = (a0, a1X, a2X
2, . . . , ad−1X

d−1)

|w · v| < ∥w∥ ∥v∥

Here,

∥w∥ ≤
√
1 + 1 + · · ·+ 1 =

√
d

∥v∥ =
√
a20 + a21X

2 + · · ·+ a2d−1X
2
d−1 = ∥p(xX)∥

Let’s Use Cauchy-Schwarz on v ·w

v = (1, x0/X, x20/X
2, . . . , xd−1

0 /Xd−1)

w = (a0, a1X, a2X
2, . . . , ad−1X

d−1)

|w · v| < ∥w∥ ∥v∥

Here,

∥w∥ ≤
√
1 + 1 + · · ·+ 1 =

√
d

∥v∥ = ∥p(xX)∥ ≤ bk/
√
d

by condition (2).

Let’s Use Cauchy-Schwarz on v ·w

|w · v| < ∥w∥ ∥v∥

∥w∥ ≤
√
d

∥v∥ = ∥p(xX)∥ ≤ bk/
√
d

Finally, using Cauchy-Schwarz:

|p(x0)| = |w · v| <
√
d

bk√
d
= bk

Wait, So What I’m Saying Is...

p(x0) ≡ 0 (mod bk) and |p(x0)| < bk mean that...

p(x0) must be

= 0 over all integers.

And now, this modular polynomial is easy to solve since it’s

in the integers.

Wait, So What I’m Saying Is...

p(x0) ≡ 0 (mod bk) and |p(x0)| < bk mean that...p(x0) must be

= 0 over all integers.

And now, this modular polynomial is easy to solve since it’s

in the integers.

Wait, But What Was The Point?

f(x) ≡ 0 mod p doesn’t satisfy this theorem’s bounds anyway.

Recall that for polynomial p(x) being solved for,

∥p(xX)∥ ≤ bk/
√
d, which f doesn’t satisfy.

A possible solution

What if we can construct another polynomial g(x) using f(x)
that has the same root x0 we care about, but is "smaller"

and therefore:

• Obeys the bounds of the theorem, and thus

• Roots are easy to enumerate since it’s over the integers

instead of a modulo.

How do we create g(x)?

We want a g(x) such that g(x0) ≡ 0 (mod bk) (and of course

that it works with Howgrave-Graham). Or,

g(x) ∈ bkZ

g(x) ∈ bkZ+ bkf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z+ bkx2f(x)Z+ · · ·

Point is, none of these operations change the meaning of g,
since f(x0) = 0 mod bk for the root we want.

How do we create g(x)?

We want a g(x) such that g(x0) ≡ 0 (mod bk) (and of course

that it works with Howgrave-Graham). Or,

g(x) ∈ bkZ
g(x) ∈ bkZ+ bkf(x)Z

g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z+ bkx2f(x)Z+ · · ·

Point is, none of these operations change the meaning of g,
since f(x0) = 0 mod bk for the root we want.

How do we create g(x)?

We want a g(x) such that g(x0) ≡ 0 (mod bk) (and of course

that it works with Howgrave-Graham). Or,

g(x) ∈ bkZ
g(x) ∈ bkZ+ bkf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z

g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z+ bkx2f(x)Z+ · · ·

Point is, none of these operations change the meaning of g,
since f(x0) = 0 mod bk for the root we want.

How do we create g(x)?

We want a g(x) such that g(x0) ≡ 0 (mod bk) (and of course

that it works with Howgrave-Graham). Or,

g(x) ∈ bkZ
g(x) ∈ bkZ+ bkf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z
g(x) ∈ bkZ+ bkf(x)Z+ bkxf(x)Z+ bkx2f(x)Z+ · · ·

Point is, none of these operations change the meaning of g,
since f(x0) = 0 mod bk for the root we want.

And Now, The Voilà

Remember the shortest vector problem?

We can put in coefficients to (xX)kf(x) as k ∈ Z bases for a

lattice into LLL and find (one of) the shortest vector bases

for the lattice.

Wait, what just happened?

Remember, vectors can represent polynomials.

We’ve made a bunch of polynomials that have the same

properties as this ideal g(x), but they’re not the right

size for Howgrave-Graham. But, using LLL, we can find a

small enough vector that it might work!

To Summarize

• We know r ≤ 2evil = X, where ‘evil’ is the number of bits

that were wiped out. This is an upper bound.

• Construct matrix M so that:

M =

X2 Xa 0
0 X a
0 0 N


• Run LLL on this matrix, interpreting rows as basis

vectors, get output g(xX).

• Use the shortest vector as coefficients of g(x), which

is not a modular polynomial.

• Enumerate roots ri of g(x) and check for (a+ ri) | N.

Whaddya Mean, That’s Voilà?

Two observations:

1. Our lattice is made up of integral multiples of the

basis vectors, which are coefficients of f(xX). The

shortest basis generated by LLL, interpreted as

coefficients of g(xX), will have a set of solutions on

this lattice as well: so we retain all the information

f(x) gives us.

2. Recall that Howgrave-Graham requires that

∥g(xX)∥ ≤ bk/
√
d, which is true, since the norm of the

shortest output vector basis from LLL is, well, short.1

1Not exactly accurate --- if you figure out the bounds correctly, it’s

short enough.

Whaddya Mean, That’s Voilà?

Thus, we can take g(Xx), remove the X terms to get g(x).
Since it satisfies Howgrave-Graham, solve it over the

integers (easy), and check all the roots we get for dividing

N. More precisely,...

To Summarize

The matrix M was constructed with values xXf(xX), f(xX),
and bkZ = N. Recall f(x) = a+ x. These written out are:

xXf(xX) = (xX)2 +Xxa+ 0

f(xX) = 0 + xX + a

0 + 0 +N

Taking the coefficients and putting them into a matrix:

M =

X2 Xa 0
0 X a
0 0 N


That’s where M came from: it generates the lattice of the

coefficients scaled by Xk.

Okay, how do we use this?

What if we can leak some information about (p, q)?

p, q, e = random_prime(2^512), random_prime(2^512), 17

n, tot = p*q, (p-1)*(q-1)

d = inverse_mod(e, tot)

print(p - p % 2^100, q - q % 2^100)

We can recover p and q even though we’re missing a lot of

their bits!

	Meta
	Motivation
	Danger: Math Ahead

