g%g SIGPwny

SP2024 Week 12 e 2024-04-11

Symbolic Execution

Nikhil Date and Pete Stenger

Announcements

- bO01lersCTF 2024 - Tomorrow!
- Friday 5 PM CST - Sunday 5PM CST
- Details TBD, we will be playing in some fashion

- Last chance for shirts: sigpwny.com/shirt2024

0

ctf.sigpwny.com

sigpwny{stat3 exploslon}

case 21:
1f |

&& [96] == @x1D306815

&& [16])) == OXEFFFFFF6

&& [59])) == 0x5412A902

&& 5 4 4]) == Ox8828C7B

&& R4] == 0x4B0131D4

&& §) == OxBBF45D10

&& == @xEODFBBFA

&&) == OxAFDDB97D

&& == OxAFB89CCHA

&&)) == Ox96DF7FBF

&& == @x5BFBFFDB

&& f == @xB78DBE0O

&& 74])) == OxEFDEFFFD

' 5] == OxAESBB39F
[41])) == Ox82DB8DOA
(46])) == 0x21100020
[69])) == @xDS5FD9793
[90])) == OxEBFD3F5A
 107[50]))) == OxAFBFF271

0

SAT/SMT Solvers

- SAT stands for satisfiability. SAT solvers solve propositional
formulaslike(-pVgVnA@pPV-qV
- Boolean SAT is NP-complete, but in practice many problems are
tractable

- SMT stands for satisfiability modulo theories. SMT solvers

allow non-logical operations, depending on the "theory"
- but still solve a satisfiability problem

0

SMT Theories

— Integers

— Bitvectors

— Arrays

— |EEE Floats

— Reals

— Uninterpreted Functions (Blackbox Pure Functions)

0

Constraint solving

- Solve complex systems of equations

- z3 is an SMT solver
- python library for solving constraints
- pip install z3-solver

[15] = 91.0) {
[18] = 91.0) {
[0] + [0] + 11.0 = [0] + 130.0) {
[23] + 6.0 == : 23] + 127.0) {
[1] + 396.0) {

[2] - 17.0) % 4.0) {
[21]) - 44.0) {

[20] * 3.0 - 2.0) *x 3.0 - (arr[20] * 5.0 + 2.0) x 4.0
[20] % -8.0 - 146.0) {
[4] % 5.0 - 2.0) % 5.0 -
[4] + [4] + 7.0) *x 6.0 =

[4] % 33.0 - 1132.0) {

0

API of Z3 Py

— "Sorts": data types (Int, BitVec, Real, Array)

— Operators (are theory-specific)
— Logical operators (Or, And, Not, Implies)
— Arithmetic operators (+, -, *, /)
— Inequalities and equality (==, >, <, >=, <=)
— Bitvector operators (bitwise operations, bit shifting)

— Constraints

— "Model": assignment of values to "variables" that satisfies all
constraints

— Good resource:
https://ericpony.qithub.io/z3py-tutorial/quide-examples.htm

R

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Z3 BaSiCS pip install z3-solver

coNOYUT A WN P

O

10
1l
12
13
14
1>
16
£ K

(Note: this finds any of the possible solutions)

from z3 import *
i X;+'§/:::12
define variables X < \

x = Int('x")

y = IntC'y")

add constraints
s = Solver()
s.add(x + y == 12)
s.add(x < y)

print(s.check()) # prints "sat" if has solution

print solution
m = s.model()
print(m[x])
print(mLyl)

0

Z3 iS POWGFfUl pip install z3-solver

Q=1 Int('Q%i" % (i + 1)) for i in range(8)]

XXX = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]
YYY = [Distinct(Q)]
777 = [If(i == 7,

True,

And(Q[1] - Q[j] !'= 1 - J, Q[i] - Q[J] !'=3J - 1))

for i in range(8) for j in range(i)]

solve(XXX + YYY + ZZZ)

What does this line do? (%:ig

Z3 Is Powerful

pip install z3-solver

Q=1 Int('Q%i" % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val ¢ = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

YYY = [Distinct(Q)]
227 = [If(i == j,
True,

And(Q[1] - Q[j] !'= 1 - 3, Q[i] - Q[]J] '= 3] - 1))

for i in range(8) for j in range(i)]

solve(val c + YYY + ZZZ)

What does this line do? (%:ig

Z3 iS POWGFfUl pip install z3-solver

Q=1 Int('Q%i" % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val ¢ = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

At most one queen per column

col ¢ = [Distinct(Q)]

222 = [If(i == 7,
True,
And(Q[i] - Q[Jj] '= 1 - 3J, Q[i] - Q[j] '=J - 1))

for i in range(8) for j in range(i)]

solve(val c + col c + ZZZ)

What does this line do?

0

Z3 Is Powerful

pip install z3-solver

Q=1 Int('Q%i" % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val ¢ = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

At most one queen per column

col ¢ = [Distinct(Q)]

Diagonal constraint
diag ¢ = [If(i == j,
True,
And(Q[i] - Q[3] !'=1i - J, Q[i] - Q[Jj] !'= 3 - 1))

for i in range(8) for j in range(i)]

solve(val ¢ + col_c + diag c) @

N~

Z3 Cha"enge pip install z3-solver

System of diophantine equations

- (only integer solutions) from z3 import *
- Hard to solve normally x = Int('x')
/] 27

s = Solver ()
(y - 123456)"2 = (x - 234567)"3 - 2
// change line below
s.add (??7?)

submit: sigpwny{x + 2y} e e

print (s.model ())

R

Your turn! ~2 minutes to try this out =

Symbolic Execution

- Solve for inputs
- Generate constraints from program automatically

mov r5, #3
X = ? mul Edy XLy 25
y = X X 3/ sub r3, r2, x
Z =y - X/ cmp ri, #4

beq 14 <success>

- Solve for x such that z ==

Input Constraint

0

Symbolic Execution Usages

- Reversing without reversing
- Solve for input on stdin (flag) such that the flag checker prints “That
flag is correct!”

- Automated PWN

- Solve for input such that the instruction pointer is overwritten
- Research: binary instrumentation and analysis

R

Angr

- Symbolic execution on binaries
- Angr can be used for automating CTF chals
- Install with pip install angr

- Template (e.g. for angry challenge):
- https://qist.qithub.com/richvyliu/33489063d02c0a2afe0d6debec8d3e07

LS

https://gist.github.com/richyliu/33489063d02c0a2afe0d6de6ec8d3e07

Angr CTF Challenge

- https://github.com/angr/angr-examples/tree/master/examples
/b01lersctf2020 little engine

- Standard (basic) rev challenge
- gets input from the user
- does some validation
- tells you if it's correct

0

https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine

Angr Tips

- Running out of memory?
- Set environment variable REUSE_Z3 SOLVER=1
- Avoids cloning z3 solver when state splits
- Add veritesting=True argument to simulation_manager
- Automatically identifies merge points

- Set LAZY_SOLVES flag

- Defer evaluation as far as possible

0

Angr Internals

- Uses z3 for constraint solving and symbolic manipulation

- Steps through program
- splits states when it encounters a branch

- “State”: represents program state (memory, registers, etc.)
- States have "path conditions”

- Stashes: collections of states (active, found, deadended,
errored)

- Simulation Managers: control how search proceeds

R

A Problem

— State explosion
— Repeated branching can cause the number of states to become
unmanageable

0

State Explosion Example

#include <stdio.h>
int main () {
char buf[27];
fgets (buf, 27, stdin);

char target[] = "abcdefghijklmnopgrstuvwxyz";
int count = 0O;
for (int 1 = 0; i < 26; i++) {
1f (bufl[i] == target[i]) {
count++;
| } How many branches
Lt (count —— 26) would this create?
printf ("correct\n");
} else {

printf ("wrong\n") ; CEE;
} 4§§§

} SN~

State Explosion Example

#include <stdio.h>
int main () { ’

char buf[27];

fgets (buf, 27, stdin);

char target[] = "abcdefghijklmnopgrstuvwxyz"; ‘ ’

int count = 0; .

for (int 1 = 0; 1 < 26; i++) { \\\‘
if (buf[i] == target[i]) {

count++;
} N/A count++
1f (count == 26) {
printf ("correct\n"); 2A(26+ 1) = a lot e I (:

} else { (
printf ("wrong\n") ;

Going Further

- Angr's behavior can be modified/instrumented/customized

- Research

- Fuzzware
- uses angr for more effective fuzzing
- reduces "input overhead"

- Libmatch
- uses angr as a static analysis tool

0

Next Meetings

2024-04-14 « Tomorrow (Friday)

- b01lersCTF 2024 starts at 5 PM
- More info in Discord soon

2024-04-18 « This Sunday

- Location-based OSINT with Henry
- Become rainbolt

YYYY-MM-DD « Next Thursday

- Social Engineering with Emma and Sagnik
- Learn how to manipulate people

R

ctf.sigpwny.com

sigpwny{stat3 exploslon}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

