
Week 11
Password Cracking

Minh and Aditya

Announcements

- PlaidCTF 2022 is tomorrow!
- Superteaming with Purdue and Ohio State
- To join, click "Interested" on the Discord event

- Sandia Visit
- Next Tuesday (4/12) at 5:45PM
- FREE PIZZA 🍕🍕🍕

- Spray Paint Social
- This Sunday after our Sunday seminar
- Meet at ACM room

sigpwny{we_will_rockyou}

￼

What is hashing?

- Hashing takes an input and runs it through a function that
generates a fixed length value in a deterministic manner

- The function is one way, so you can't reverse the original input
from the hash without brute force

Plaintext: "Hi"
MD5 Hash: c1a5298f939e87e8f962a5edfc206918
Plaintext: "Hii" (avalanche effect)
MD5 Hash: 65c1aa5487711a23f7477200fd01e253
Plaintext: "Wow, this is a very long sentence!"
MD5 Hash: 0df95e5a7e96079e67663243e29aeba3

Hashing in Password Authentication

- Passwords should never be stored in plaintext: instead their hash
representation is stored

- When you login with a password, the hash of the password is
calculated and checked with the stored correct hash

- This way if an attacker obtains a hash, they can't obtain user
passwords unless they brute force them

Server stores: 5f4dcc3b5aa765d61d8327deb882cf99
Client Guess 1: hunter2 2ab96390c7dbe3439de74d0c9b0b1767
Client Guess 2: password 5f4dcc3b5aa765d61d8327deb882cf99

How to Crack a Password Hash

- As mentioned earlier, hashing is one way, so you can't easily get a
password if you're given a hash

- The only way is to brute force or "crack" the hash with guesses of
what the password could be

- Pure brute force: using every possible combinations of letters, numbers,
and symbols (takes a LONG time)

- Dictionary/wordlist attack: limits the amount of guesses by guessing
common, or likely valid passwords

- Rule-based dictionary attack: like a dictionary attack but more versatile

Computing Hashes

- Generating a single hash takes less than a second but computing
a lot of hashes in a brute force attack takes much longer

- Highly dependent on your compute power
- GPUs can crack passwords faster than CPUs
- People build custom password cracking rigs with lots of GPUs or

just rent a high-compute cloud server on AWS/Google
Cloud/Azure

Prebuilt Wordlists

- rockyou.txt
- This is the standard wordlist to use if you don't know anything about

the password you're cracking
- Contains ~32 million common passwords sourced from various password

breaches
- Short enough to go through in a reasonable amount of time,

comprehensive enough for most cases
- Most CTFs will use passwords from rockyou to simplify password

cracking and make challenges not impossible
- SecLists

- Repository of even more prebuilt wordlists

Creating a Custom Wordlist

- A wordlist attack has a higher chance of succeeding if you use
words/phrases related to whoever created the password, instead
of a generic wordlist like rockyou

- e.g. pet names, song lyrics, keywords

Different Hashing Functions

- MD5
- SHA256
- SHA512 (newer Linux systems)
- md5crypt (older Linux systems)
- NTLMv2 (newer Windows systems)
- LM (ancient Windows systems)

Why Different Hash Functions Matter

- A hashing function that takes more time to compute makes
password cracking less effective

- MD5 takes around 500ms to compute a hash
- SHA512 takes around 1000ms to compute a hash (double of MD5)
- Verifying a password takes double time (still insignificant), but cracking

the password takes exponentially more time
- Bigger hashes sizes reduces the possibility of hash collisions

- MD5 hashes contain 16 bytes
- SHA512 hashes contain 64 bytes

Salting

- Adds a random string to the password before hashing called a salt
- This way an attacker can't just precompute all possible hashes

beforehand and compare a hash to the database of all hashes
- Storing precomputed hashes in this manner is called rainbow

tables

How to NOT design a hash function
(with Microsoft)
LM hash function steps:
1. Convert all lowercase to uppercase
2. Pad password to 14 characters with NULL characters (or get rid of
extra characters after first 14 characters)
3. Split the password to two 7 character chunks
4. Create two DES keys from each 7 character chunk
5. DES encrypt the string "KGS!@#$%" with these two chunks
6. Concatenate the two DES encrypted strings. This is the LM hash.

How to NOT design a hash function
(with Microsoft)
Original password: R3@lLyS3cur3P4sSw0rd!8953
Effective password: R3@LLYS3CLR3P4 (limited to 14 characters,
uppercase only)
Split into two hashes:
R3@LLYS -> 0081A58503BD7E1D

3CLR3P4 -> 5438E4541FAB2BDE

Full LM hash: 0081A58503BD7E1D5438E4541FAB2BDE

You can just precompute every 7 character password
combination and compare the hash to figure out the password

Tools

Hashcat

- Hashcat is an extremely fast (read: uses GPU) "password
recovery" tool, which automates cracking passwords using the
methods described earlier.

- Three main command line switches you should know about:
- -m NUM: Chooses the hash type, that is, which kind of hash you’re trying

to "reverse." For instance, `-m 0` is MD5.
- -a NUM: Chooses the attack mode. Most of our challenges will use 0,

straight mode.
- -h: Help. Get a list of all hash types, attack modes, etc. supported by

Hashcat.

Hashcat Usage Examples

- Run Hashcat on example400.hash, using example.dict as a
wordlist.

- hashcat -a 0 -m 400 example400.hash example.dict
- Same as above, but using Hashcat "rules":

- hashcat -a 0 -m 0 example0.hash example.dict -r rules/best64.rule
- A Hashcat rule is a sort-of regular expression to try variants on

your wordlist. See documentation.
- Hashcat has brute-force/hybird attacks that are often useful.

John the Ripper

- Use hashcat instead
- The only reason to use JtR is for its zip2john and pdf2john

utilities to crack ZIP archive and PDF passwords

Mentalist

- Easy to use GUI program to
prepend or append numbers,
characters, or even other
wordlists to a wordlist

Resources

- Hashcat: https://hashcat.net/hashcat/
- rockyou.txt:

https://github.com/brannondorsey/naive-hashcat/releases/downl
oad/data/rockyou.txt

- Mentalist: https://github.com/sc0tfree/mentalist
- SecLists:

https://github.com/danielmiessler/SecLists/tree/master/Password
s

https://hashcat.net/hashcat/
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/sc0tfree/mentalist
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords

Next Meetings

Sunday Seminar: 2022-04-10
- Latice Attacks on RSA
- Spray paint social right after

Next Thursday: 2022-04-14
- TBD

