gg@ SIGPwny

SP2024 Week 04 o 2024-02-11

PWN lll - Heap Exploitation

Sam Ruggerio

Announcements

- Next Weekend, Feb 16 @ 10pm: LACTF Starts

- We will be in person again! Free pizza/food for participants!

0

ctf.sigpwny.com

sigpwny{house of house of house}

ITS A CHRISTMAS TREE WITH A
HEAP OF PRESENTS (UNDERNEATH!

... WERE NOT INVITING
YOU HOME NEXT YEAR.

|

oA

Memory Layout

Bottom of memory
(0x0000000000000000)

Top of memory
(OXFFFFFFFFFFFFFFFF)

Memory Region

—_—

.text
(instructions)

.data
(initialized
globals)

.bss
(uninitialized
globals)

heap

stack
(runtime data)

0

Memory Allocation

- We've seen static stack allocation
- C does support Variable Length Arrays
- How to we return an address to the buffers?

int* buffers(int size){
char buf[256];
char buf2[size];
return buf2;

}

0

The Heap

The Heap = Heap ADT
- Allows Dynamic Memory Allocation
Allocations are preserved across function calls

- malloc(int size): Returns a pointer to allocated data
- free(int* ptr) : Frees the allocation located at ptr.

- Regardless what you put, the minimum allocation will make a
32 byte chunk with 24 bytes of usable memory (64-bit).

£

Using the Heap

void example(int size){
int* buf = malloc(sizeof(int)*size);
for (int 1=0; i<size; ++1){
buf[i] = i;
}
free(buf);

}

oA

Basic Model of the Heap

Top Chunk

malloc

Alloc A

Top Chunk

malloc

Alloc A Alloc (free)
Alloc B Alloc B

free
Top Chunk Top Chunk
Alloc C
Alloc B

malloc Cg

Top Chunk £§§

N~

What happens when you free

- When you free a chunk, it gets added to a free list

- If you malloc with a similar size, malloc checks the free list
first

- glibc provides many optimizations to make allocations and
reallocations fast!

- When you hear bins, think a double/single linked list.\

- Extra metadata gets placed into a chunk to maintain the list

R

Free Chunk

In-use Chunk

mchunkptr " A=Allocated Arena
(| size | AMPK M= Mmap'd
returned ~P=previnuse
by malloc ‘

chunk <
pavload

mchunkptr

Free Chunk

|

prev_size

size

A = Allocated Arena
M= Mmap'd
P = previn use

~ large chunks only

same as size
P=0

Coalesce and Split

- Coalescing free chunks into one big chunk
- Done when several adjacent chunks are free and not reused
- Some bins prevent immediate coalescing

- Splitting a large chunk into a remainder chunk
- Sometimes an alloc is smaller than a free chunk available
- malloc will split the chunk into one of the correct size and a
remainder chunk

- Alarge chunk may coalesce with the top chunk if adjacent
- When the top chunk gets too large, malloc will release the
memory to the system.

R

Bins

- Malloc will reserve memory from the system when it needs

- It will try to keep that memory available for reuse for as long
as possible

- Free chunks have to be efficiently available for all chunk sizes

Free, Unsorted, Small, and Large Bin Chains

mutex

fastbing| |

next

&
S

Tcache BiIns

- Introduced glibc2.26: Thread-specific bins for small

allocations
- 64 bins, max count of 7, min size of 0x20, max size of 0x410
- Subtract 8 for metadata, so min size for bin is 24 bytes or less.

- Each new thread gets a new tcache
- Don't worry about this for now, multithread heap pwn is super
advanced

- Singly-Linked, Only forward ptrs
- Because of their speed, there is lacking security checks within

them
g

Fast Bins

- The "overflow" for tcache
- 10 bins, between 0x20 and 0xb0

- Sometimes only 7 are active...
- The "in-use" bit is maintained to prevent coalescing
- The fast bin may be flushed and coalesced if large chunks are
available

- Singly Linked

0

Unsorted Bin

- The laundry pile of memory chunks
- When you free, and it doesnt fall in tcache/fast, it goes here

- malloc waits to see if you immediately reuse this chunk
- If not, it will sort it into a small or large bin

0

Small Bins

- Like fast bins, fixed size in every bin

- 61 bins, starting at size 32 and up to 1024

- Adjacent chunks can be combined and moved to different
bins

- Circular Doubly Linked

0

Large Bins

- Stores a range of memory allocations in each bin
- 63 bins
- Memory allocations are inserted in a bin in sorted order
- An exponentially smaller number of bins are used for
exponentially larger allocations
- there are 32 bins that store allocations within 64 byte differences
from each other

- there are 2 bins that store allocations within 256kb differences
- there is 1 "everything else" bin.

- Circular Doubly Linked

0

Still a Basic Model of the Heap

small bins

tcache

v

0x20

—>

Free Chunk A

Ox20

Free Chunk C >

Free Chunk D —J

0x30

o0x40

Ox50

Heap Base

Free Chunk A

Free Chunk B

fastbins

0x30

0x40

Ox50

Chunk

Ox20

=

Free Chunk B

large bins

Free Chunk C

0x30

Free Chunk D

0x40

Free Chunk E

0x50

Free Chunk F

Top Chunk

0x800

unsorted

v

Free Chunk F

V-

0x1000

=

Free Chunk E

0x2000

R

N~

Malloc's Brothers

- calloc(items, size) allocates items*size bytes, and

clears it to zero.
- Does NOT use the tcache!
- realloc(ptr, size) changes the allocation size of ptr to

size.
- A horrifying amalgamation of free and malloc.
- Will cause coalescing and splits if you increase/decrease size

R

Malloc is Horrible to Understand

- There's still many optimizations, behaviors, and interactions
not covered

- Looking at the glibc source code is informative but not easy

- It also changes version to version...

- The best way to understand malloc's memory patterns is to

just experiment
- Especially when doing challenges, as glibc versions change.

R

Exploiting Programs

- We want arbitrary code execution:
- Control the return address on the stack
- Return to glibc library for useful functions

- Two Primitives:

- Arbitrary Read
- Arbitrary Write

- If we can get an arbitrary write to the stack, we can control
program flow

- If we can get an arbitrary read, we can leak libc addresses

R

Leak Traversal

environ

Stack

Saved Pointers

libc_start _main

last next ptrs

Heap

>

Libc

main arena

0

Use After Free (UAF)

- When you free a pointer, you are responsible for clearing the
variable storing the pointer (ptr = NULL;)

- Nothing stops you from reading/writing to that pointer
post-free

- This allows you to affect many aspects of malloc's state
- Preload chunks with data

- Modify Chunk sizes
- Modify fwd/bk pointers(!!)

0

Example: tcache poisoning

Top Chunk

malloc

Alloc A

P

Top Chunk

malloc

Alloc A

Alloc B

L

Top Chunk

0

Example: tcache poisoning

Alloc A

Alloc B

Top Chunk

free

tcache

0x80

Free A Free A
Alloc B Free B
free
» Top Chunk » Top Chunk
Free B Free A

0

Example: tcache poisoning

tcache

0x80

overwrite b fwd ptr
(UAF)

Free B

Stack

0

Example: tcache poisoning

Free A

Free A

Top Chunk

malloc

tcache

0x80

Stack Chunk

Free A Leaked A
Alloc B Alloc B
malloc
» Top Chunk > Top Chunk
Free B Stack

0

Safe Linking

- malloc attempts to """encrypt""" single-linked list pointers

- (pos >> 12) ~ ptr

- By taking the position of where the ptr is stored, you encrypt it
with the ASLR bits of the position.

- But if the position and the ptr are in the same page, then you

can get the heap base:

def deobfuscate(val)
mask = Oxfff << 52
while mask:
v = val & mask

val "= (v_,?> 12) &Q
* >

mask >>= 12
return val

Double Free

- The free bit does not always mean free
- (the one thing an indicator bit should do)

- Calling free on an already free'd chunk can add it to a free
list twice

- malloc tries to prevent trivial double frees (2 in a row)
- the tcache checks an entire list (only 7)

- Fast bins are vulnerable!
- Modify the free metadata of the received chunk

0

Goals with Heap Exploitation

- Make malloc:
- return a chunk somewhere interesting
- write a value to an arbitrary address

- Make libc merge invalid chunk

0

Realloc

pwndbg tools

- hea
- Dl?splays the state & address of all heap chunks

- bins/tcachebins/fastbins/smallbins/largebins
- Displays the state and chunks in each bin

- vis_heap_chunks

- Shows a hex dump of the heap, color codes chunks, and marks
chunks in bins

R

Resources

https://qgithub.com/shellphish/how2heap

R

https://github.com/shellphish/how2heap

Resources

- https://qithub.com/shellphish/how2heap
- has more resources linked!

- https://azeria-labs.com/heap-exploitation-part-1-understandi
ng-the-qglibc-heap-implementation/
- https://heap-exploitation.dhavalkapil.com/

£

https://github.com/shellphish/how2heap
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://heap-exploitation.dhavalkapil.com/

Next Meetings

2024-02-15 « This Thursday

- PWN IV: ROP with Aknhil
- Learn how to complete PWN exploit chains and achieve RCE!

2024-02-16 ¢ This Weekend

- LACTF
- UCLA's Major CTF Event! All are welcome!

R

ctf.sigpwny.com

sigpwny{house of house of house}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

